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Space-temporal behavior of a light pulse propagating in a
nonlinear nondispersive medium
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An analytical method for the calculation of the evolution of a spatially inhomogeneous light pulse in a nonlinear
optical system is developed. The description of pulse modulation is derived by using a one-dimensional map with a
quadratic maximum that shows regular and chaotic dynamics according to Feigenbaum theory. This mechanism
may dominate for a ring laser or a nonhomogeneous medium with alternating amplifying and nonlinear absorbing
layers. The total length of the system should be sufficiently small that dispersion and diffraction effects do not
appear. In this paper we present two-dimensional distributions of the wave field intensity that illustrate regular
and chaotic self-modulation of the light pulse. We give quantitative estimates for such regimes of a ring laser with a
saturable absorber, the losses into the harmonics, stimulated scattering, etc. It is found that for period-doubling
bifurcations to occur there is no need for total conversion of the pulse into the harmonic or Stokes component.

INTRODUCTION

Different types of instabilities in nonlinear systems1 are
described by finite-dimensional iterative maps, particularly
one-dimensional (1-D) maps with quadratic extrema.2

Such a map may connect, for example, the amplitudes of
oscillations separated by a certain time interval (Poincare
map). It is usually made by the numerical integration of
differential equations that correspond to a given nonlinear
system. However, in some cases a 1-D map has a clear
physical meaning and can be derived analytically, as in a
traveling-wave tube generator with delayed feedback3 or in a
ring laser with second-harmonic losses.4 For the latter case
such a laser should perform temporal modulation (with
switching time - 1 psec) of ultrashort light pulses (see Fig.
1). Self-modulation is due to the discrete nature of the
attracting set of the 1-D map, and the most important fea-
ture of such an analytical description lies in the possibility of
predicting the values of the laser parameters that corre-
spond to regular and chaotic regimes. However, the quanti-
tative consideration in Ref. 4 was restricted by a number of
limitations (not always experimentally convenient) such as
linear (unsaturated) laser gain, perfect phase matching of
harmonics, and the homogeneous transverse profile of the
light pulse and of the laser parameters.

Our aim here is to show that the above restrictions are not
necessary for an analytical description of nonlinear optical
systems by 1-D maps. Furthermore, it is a transverse non-
uniformity of the laser beam and the amplifier gain that
leads to the most interesting result: spatial self-modula-
tion. As a result, the space-temporal picture of the pulse
exhibits a complex structure composed of coexisting regions
with regular and chaotic intensity behavior. This behavior
is due to period-doubling bifurcations of 1-D maps and dif-
fers from the transverse instability reported in Ref. 5. We
also discuss sufficient conditions for such a 1-D description,
and they prove to be valid not only for the second harmonic
but for different types of nonlinear processes as well (includ-
ing stimulated light scattering).

ONE-DIMENSIONAL MAPS FOR LIGHT PULSES
IN MEDIA WITH LOCAL RESPONSE AND NO
DIFFRACTION

The map with the quadratic extremum introduced in Ref. 4
connects the values of the amplitudes of the electric field of
the pulse from any trip through the ring laser to the next one.
The phase value may be neglected owing to the absence of
interference at the entry mirror because of the short pulse
duration r << I/c, where is optical length of the ring laser (1
= 0.1-1 m). The above condition is certainly fulfilled for
ultrashort pulses ( _ 10-100 psec). One should note here
that when taking interference into account it is necessary to
use at most a two-dimensional map, because in that case the
information about the phase becomes significant.6

Suppose that the electric field E(t, r) at a certain mo-
ment of time t and at a point r1 depends on its value just at
the same moment of the previous round trip and at the same
point r (see Fig. 1). This assumption could be justified
only when the effects of nonlocal response (that is, temporal
and spatial dispersion7 ) and diffraction are weak. To be
more precise, linear dispersion may be neglected at a small
group-velocity mismatch d << (l-l - u 2 -1)- 1 X 6r and at a
slight dispersion creep d << ( 2 K/aC2)-1 X &r2/2, where u1

and u2 are group velocities of the interacting waves, 6T is the
effective duration of a spike in the temporal structure of the
pulse, and d is the optical width of the medium. At resonant
interaction times 53r should be longer than at intrinsic relax-
ation times [for two-level system: longitudinal (T1 ) and
transverse (T2) relaxation times]. One can neglect diffrac-
tion if only the Fresnel number is sufficiently large: N =
[6a2/(X X X n)] >> 1, where ba is the effective size of spatial
inhomogeneity, X is the wave length, is optical length of the
laser, and n is the number of trips.

As soon as the two conditions above (absence of interfer-
ence and nonlocality) are satisfied, then successive propaga-
tion of the pulse through the elements of the ring laser is
governed by a 1-D map of the general form

I.,,(t, r) = Rflg[In(r1, t)], r,1 , (1)
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and for the second-harmonic losses in the abscence of phase
synchronism (AK = 2 X K, - K2 s 0) we have 8

I,+ = Rg(I,)fl - aSn2 [ad g(1)/'.ra/, 1 -a21,

a = (2+ As + A+ AS )

NONLINEAR PEAK LOSSES /
MIRROR TRANSPARENT TO SECONO-ARMONIC, STOKES COMPONENT

Fig. 1. Ring laser with saturable absorber and
described by 1-D map.

nonlinear losses

Fig. 2. Diagrams of 1-D maps corresponding to different mecha-
nisms of nonlinear losses: solid line, losses into the second harmon-
ic under phase synchronism; long-dashed line, losses into the third
harmonic under the same conditions; dotted-dashed line, stimulat-
ed Raman scattering (SRS) with the initial Stokes intensity IS(0) =
10-2 X I,,; long- and short-dashed line, generation of the second
harmonic in the absence of phase synchronism K = 0.2 cm-1 .

where I,, is the intensity at nth trip through the system, R is
the entry-mirror reflection coefficient, and g = (In) is the
nonlinear (saturated) gain. Transverse coordinates r de-
scribe the spatial inhomogeneity of the light beam or the
laser parameters. For a particular system with nonlinear
second-harmonic losses4 the map takes the form

In+ = Rg(In)l - th2 [ad g '(In)], (2)

where a' is the coupling constant between the harmonics.
The physical meaning of this map is clear: The first term
describes the gain; the second, nonlinear losses, i.e., conver-
sion into the second harmonic (see Fig. 2). We shall note
now that the type of map will not differ qualitatively from
the one shown in Ref. 4; if the gain is nonlinear, the conver-
sion is performed in the absence of phase synchronism or
into other harmonics. It is sufficient if the losses signifi-
cantly exceed the amplification at a certain intensity value.
For example, for third-harmonic losses under phase syn-
chronism we have

n+ = Rg(In)/[1 + a 2d2g2(In)],

AS = AK/[ag(In)], (4)

where K1,2 are the wave numbers of the first and second
harmonics, respectively, and Sn is the Jacobi elliptical sine.

The conditions for validity of the maps [Eqs. (2)-(4)] are
provided by choosing the nonlinear medium. For a KDP
crystal with d = 1 cm, X = 1.06 m, 3r = 10-100 psec, the
coherent length due to the dispersion of group velocities is
5r(U-1 - u2 1)-' 75-750 cm >> d,9 and the one due to
dispersion creep 9 is (6r/2)(a 2K/aW2)-1_103 cm. The inertia
of the electronic nonlinearity at such durations is insignifi-
cant.' 0

Another mechanism for nonliner losses may be stimulated
Raman scattering (SRS). Consider the case when the pump
wave and the Stokes wave are propagating in the same direc-
tion. For a steady-state limit the relation between the
Stokes wave intensity Is and the pump intensity Ip(O) is
given by the integration of equations for nonlinear SRS8:

[Ip(O) + ISMO)ISMO

(Ip(O) * exp|-[Ip(0) + IS(O)]ad + Is(O))

where a. is the coupling constant of the Stokes wave and the
pump wave, d is the medium thickness, and Ip(O), Is(O) is the
intensity at the entry. For generation from spontaneous
noise to occur the increment should be 20-30. Hence the
intensity is 200-300 MW/cm 2 for a medium 10 cm long,
provided that the coupling constant is a 10-2 cm/MW
(CS2)." The condition for a steady state lies in neglecting
the inertia of the molecular vibrations (T2 10 psec) and the
dispersion of group velocities of pump and Stokes waves; the
coherent length is 103 cm for aT 10 psec according to Ref.
12. Considering the trip of the pulse through the amplifier
g[In(t)], the Raman converter, and the entry mirror R, under
such conditions one may easily obtain the following 1-D
map:

b ~~~~~~~R[g(I,,) + I(0)]g(In) 5
Il = IS(0)expjad[g(In) + IS(O)I + g(In)

One more source of nonlinear losses is the saturable ab-
sorber. In the instantaneous response limit13 the rate equa-
tions for the two-level medium14 are easily integrated, and
they give the relation between the entry g[In(t)] and the exit
In+l(t) intensities through the following transcendental
equation:

In+1 ( T In+,) exp[(absTlabsg(I)]g(In) 
expI (Tabs Tlabs (6R \R) expluabsNabsdabsl 6

where Ofabs is the cross section of the saturable absorption,
Nabs is the concentration of the absorbing particles per unit
volume, and dabs is the absorber thickness.

The equation for nonlinear gain g(In) is analogous:

g(In)exp[aupTampg(In)]

= exp[ampTlampg(In)Iexp1ampNampd.p]In. (7)

INITIAL PULSE

INTENSITY -

FIRST TRIP
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This equation differs from Eq. (6) only in the sign of the
active particles' concentration Namp, and this corresponds to
the amplifying medium, not to the absorbing one. This
integration procedure is justified only when 5r is longer than
T, and T2 and the group delay (dabsamp/c) < br. The more
complicated case of noninstantaneous response and signifi-
cant diffraction has been considered to some extent in recent
papers.'5

MODULATION PROPERTIES OF ONE-
DIMENSIONAL MAPS

Let us now consider the modulation properties of the maps
[Eqs. (2)-(7)]. Begin with the last two, as this enables us to
make a comparison with the known results for a two-compo-
nent laser medium having instantaneous response in the
case when

aabsTlabs > ampTlamp' 0absNabsdabs > -ampNampdamp

(8)

Figures 3(a) and 3(b) show diagrams of the maps given by
Eqs. (6) and (7), respectively. They demonstrate linear
absorption (amplification) at small intensities and the satu-
ration that leads to free passage of large intensities through
the medium. The sum action of the saturable absorption
and amplification is described by the map presented in Fig.
3(c).

Since we assumed above that the absorbing medium is
saturated before the amplifying one [Eq. (8)], then (1) at
small intensities absorption dominates, (2) at moderate in-
tensities amplification prevails, and (3) at high intensities
the amplifier is saturated and the input mirror's and other
nonresonant losses are left. As can be seen from Fig. 3(c),
the line with the unit slope doubly intersects the diagram of
the sum map. Both points of intersection correspond to the
fixed points of this map. The lower point Ithr is unstable, as
I dI.+,/dIl = R exp(ampNampdamp) > 1. This means 2 that
the values of I smaller than Ithr under successive mapping
come to zero, and the values larger than Ithr are growing.
The same conclusion was reached in Ref. 14, where it was
noted that a two-component laser medium is a threshold
element that is transparent to light spikes of intensity higher
than Ithr In Ref. 16 this property of the tro-component
medium was used to single out and amplify a separate burst
inside the temporal structure of an ultrashort pulse.

Now we show that such a burst becomes rectangular under
the action of a 1-D map [see Fig. 3(c)]. Consider the second
stationary point Ista, According to Ref. 2 it is stationary
because here I dln+i/dInl = R < 1. Because there are no other
stationary points, this means that all the values In(t) higher
than the threshold Ithr tend to Isth. Consequently, the pulse
envelope should tend to be rectangular under the action of
the saturable nonlinearities. This will, obviously, take place
until the influence of dispersive elements is apparent. The
presence of such elements, as proved in Ref. 17, leads to
smoothing of the pulse fronts.

Consider now the regime when Ista loses its stability. This
is possible for I dI+J/dIl > 1, which occurs in the case of Eqs.
(2), (4), and (5). [For Eq. (3) IdI.+,/dIn < and Ista is
always stable.] Then, as is shown in Ref. 2, three stationary
points appear in two successive iterations: In+2 = f[f(In)].
Two of these points are stable (under moderate values of the

(c)
Fig. 3. Diagrams of the maps for two-component laser medium
with saturation on intensity. Solid lines numbered 1 have a unit
slope. Dashed lines are asymptotes, to which the graphs of the
maps (solid curves) tend at different intensities I. The asymptotes
have the following slopes: A2, d(In+,/R)/dg(I) = exp(-Gabs) < 1;
B2, dg(I.)/dI = exp(Gamp) > 1; C2, d+,/dI, = R X exp(Gamp -
Gabs) < 1 [for details see Eq. (8)1; C3, dll+ 1/dIf = R R( exp (Gamp) > 1
(unsaturated gain and saturated absorption); C4, dfll+,/dI = R < 1
(gain and absorption saturated). Gabs = abs X Nabs X dabs,
Gamp = amp X Namp X damp.

O Atir ht
Fig. 4. 1-D map with quadratic extremum exhibits the loss of
stability of fixed point I when gain G is sufficiently large. Solid
curve, In+l = f(In); dashed curve, In+2 = f[f(I)].
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Fig. 5. Dependence of stable fixed-point values on the critical
parameter. (a) Second-harmonic generation with phase detuning
AK = 0 (solid line) and AK = 0.2 cm-' (dashed line). (b) SRS with
initial Stokes intensity IS(O) = 10-2 I,,. Solid lines, Is(O) = 5 X 10-3
I,(O); dashed lines, I(O) = 10-2 IP(O); dotted-dashed lines, Is(O)=
1.5 X 10-2 (0).

critical parameter K = GR) (see Fig. 4). According to Ref. 4,
this corresponds to the reconstruction of the pulse form I,,(t)
after two round trips through the system. With a further
increase in the critical parameter successive doubling of the
states occurs according to the known quantitative laws.2

Consider the peculiarities of such doubling for the maps in
Eqs. (2), (4), and (5). First, the calculation of e3 by the values
Km, for the first bifurcations gives values considerably differ-
ent from 4.669 ... , i.e., the rate of convergence Of (Km,+l -

Km)/(Km+2 - K+i), M - is not so high as the one for a
logistic map. 2 Second, the values Km for Eqs. (2), (4), and (5)
differ markedly and show dependence on the parameters of
the maps. So for Eq. (4) one may observe the modification
of the bifurcation diagram by increasing the phase detuning
AK = 0-0.2 cm-'. Figure 5(a) shows the growth of the
bifurcation values K1 and K2. This is connected with the fact
that at the second fixed point (see Fig. 4) the modulus of the

derivative drops with the growth of A.K. As a result, it loses
its stability at higher values of K = GR. The behavior of the
bifurcation diagram in Fig. 5(b) is governed by an analogous
mechanism. This diagram demonstrates bifurcations of Eq.
(5) at different intensities of the entry Stokes signal Is(O).

SPACE-TEMPORAL SELF-MODULATION

We have considered different variants of the map [Eq. (1)]
without taking into account the dependencies of the intensi-
ty and the parameters of the system (e.g., G, A, and K) on the
transverse coordinates r _L. We now show that taking this
dependence into account results, even within the framework
of applicability of the map [Eq. (1)], in a highly complex
evolution of the pulse envelope. Consider the propagation
of a two-dimensional Gaussian pulse [Fig. 6(a)]. The figure
shows the dependence of the intensity on the time (t - zic)
and the transverse coordinate x. Dependence only on the
transverse coordinate x corresponds to cylindrical geometry,
in which the distribution over the y axis is practically homo-
geneous. One may analogously depict the dependence only
on the space coordinates x and y at a determined moment of
time.

FIRST TRIP

INTENSITY

SECOND TRIP

INTENSITY A

THIRD TRIP FOURTH TRIP

(a)

FIFTH TRIP SIXTH TRIP

INTENSITY

SEVENTH TRIP EIGHTH TRIP

(b)

Fig. 6. Evolution of space-temporal structure of the pulse at dif-
ferent numbers of round trips through the system (GR = 26).
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FIRST TRIP

INTENSITY

THIRD TRIP

INTENSITY

SECOND TRIP

INTENSITY -

FOURTH TRIP

(a)

FIFTH TRIP SIXTH TRIP

SEVENTH TRIP EIGHTH TRIP

(b)

Fig. 7. Same as Fig. 6 but presented for inhomogeneous rectangu-
lar distribution of the gain coefficient G over the pulse cross section:
in the center GR = 56; at the sides GR = 26.

Consider what happens to the envelope of such a Gaussian
pulse under the action of a nonlinear, nondispersive trans-
formation [Eq. (1) = Eqs. (2) + (6) + (7)] for GR = 26 (two-
level modulation). Remember that the use of such a map
corresponds to pulse propagation in a ring laser with a satu-
rable absorber and conversion into the second harmonic
under the phase synchronism. The use of the absorber
results in the damping of intensities lower than Ithr. Thus
the pulses presented in Figs. 6 and 7 are limited in space and
time as well.

Figure 6(a) illustrates that after one round trip the inten-
sity drops at the points with relatively high initial intensity
owing to considerable losses into the harmonic. At the same
time, at the points with small intensity, losses into the har-
monic are insignificant, and the intensity grows because of
the amplification. In further round trips the intensity val-
ues tend to be stable, fixed points (modulation levels) [see
Figs. 6(a) and 6(b)]. The circular symmetry of the pattern is
determined by the symmetry of the initial Gaussian pulse
(see Fig. 1). After eight round trips [Fig. 6(b)] a typical
structure is formed that has almost plane tops and bottoms.
Here, because of the nondispersive character of the 1-D

map,4 a noticeable steepening of the envelope is observed.
It should be noted that such space-temporal self-modula-
tion limits the applicability of the point map. This is ex-
plained (see Fig. 6) by the decrease in the typical size of the
space inhomogeneity of the pulse, and, as a consequence, of
the Fresnel number N = ba2/(Xln) as well.

The behavior of the pulse under the high critical parame-
ter GR is illustrated by Fig. 7. After the first two round trips
the shape of the envelope does not differ qualitatively from
that of two-level modulation, while absolute values of the
intensity in the maxima are somewhat higher. In further
round trips the presence of a larger number of the modula-
tion levels becomes apparent. In the example given, the
number of levels in the central part of the pulse is infinite,
and it corresponds to the chaotic modulation (GR = 56). As
a result, up to the eighth round trip [Fig. 7(b)] the envelope
is close to irregular, and it is characterized by a considerable
number of bursts of different amplitudes. At the same time,
at the sides a regular structure is formed that is analogous to
the one shown in Fig. 6(b) with two modulation levels (here
GR = 26). The example in Fig. 7 shows that a simple
description of the evolution of the laser pulse by a 1-D map
with the parameters dependent on transverse coordinates
leads to outwardly complex space-temporal dynamics.

CONCLUSION

Consider now for which laser systems a 1-D description will
be correct. Without restricting ourselves only to the ring-
laser system we can say that the most common model of such
a system could be presented by a sequence of alternating
elements with amplification and elements with nonlinear
losses. The total length of the system should be sufficiently
short: It is the case that the dispersion and diffraction are
negligible. A typical example of such a system was consid-
ered in Ref. 18.

For period-doubling bifurcations to occur there is no need
for total conversion of the light pulse into optical harmonics
or Raman components [Eqs. (2)-(5)]. In other words, the
diagrams of the maps should not tend to zero at large inten-
sities, because it is sufficient that I dI,+,/dI > 1 at fixed
points of the maps. For example, the diagram of the map of
Eq. (4) oscillates, intersecting the line with a unit slope many
times (Fig. 2 shows two such oscillations). Nevertheless, the
period-doubling bifurcations still occur, and at a certain
value GR they lead to chaotic motion. At the same time, the
second-harmonic efficiency at the pulse maximum is 80%
(AK = 0.2 cm-1), while the energy efficiency is considerably
smaller. Therefore practical realization of such period-dou-
bling regimes seems to be more likely. The above consider-
ation indicates that it may be possible to observe instabil-
ities of the space-temporal structure of the light pulse dis-
cussed just now. Of course, 1-D approximation gives a
rough picture of such instabilities, and satisfactory agree-
ment between theory and experiment could be obtained only
by taking into account the nonlocal effects, i.e., dispersion
and diffraction. An interesting approach was proposed in
Ref. 15, where an attempt was made to include nonlocality
directly in the discrete dynamics without solving the whole
set of partial differential equations. We hope to consider
some aspects of this approach in future work.
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