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We consider the cold bosonic ensemble trapped by a helical interference pattern in the optical loop
scheme. This rotating helical potential is produced by the two slightly detuned counter-propagating
Laguerre–Gaussian laser beams with counter-directed orbital angular momenta ±�h̄. The detuning δω
may occur due to rotational Doppler effect. The superfluid hydrodynamics is analyzed for the large
number of trapped atoms in Thomas–Fermi approximation. For the highly elongated trap the Gross–
Pitaevskii equation is solved in a slowly varying envelope approximation. The speed of axial translation
and angular momenta of interacting atomic cloud are evaluated. In the T → 0 limit the angular
momentum of the helical cloud is expected to be zero while toroidal trapping geometry leads to 2�h̄
angular momentum per trapped atom.
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1. Introduction

The hydrodynamics of the sufficiently cold (T ∼ 10−6 K)
bosonic ensemble trapped by optical potential V (�r, t) [1–3] is de-
scribed by the Gross–Pitaevskii equation (GPE) [4] for macroscopic
wavefunction Ψ (�r, t):

ih̄
∂Ψ

∂t
= − h̄2

2m
�Ψ + V (�r, t)Ψ + 4π h̄2as

m
|Ψ |2Ψ, (1)

where m is the mass of atom, as is the two body s-wave scattering
length. The negative as reduces the energy of ensemble and causes
the mutual attraction of atoms. This results in formation of bright
solitons in 1D and collapse in higher dimensions. On the contrary
in repulsive BECs atoms repel each other and dark solitons or vor-
tices are formed. In the periodic potential gratings [5]:

V (�r, t) ∼ I(z, r, t) ∼ exp
[−r2] cos

[
δωt − (k f + kb)z

]
, (2)

where r is a distance from propagation axis z, δω = c · (k f − kb) =
ω f − ωb is a frequency difference of the counter-propagating z-

paraxial laser beams with the opposite wave vectors |�k( f ,b)| ≈
k( f ,b) , the many-body nonlinearity leads to the nonlinear tunnel-
ing, self-trapping and other quantum interference phenomena [6].
For accelerated 1D optical gratings when δω = ˙δω · t , i.e. in the
noninertial reference frames [5] the interacting bosons demon-
strate Bloch oscillations and Landau–Zener tunneling. In rotating
1D lattices the repulsive ensemble may have stable ground states
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and vortex soliton states [7]. For the attractive ensemble in 2D ro-
tating lattices [8] the localized stable solitons exist in the certain
range of angular velocities. Inside the parabolic well with trapping
frequency ω⊥ and rotation frequency Ω the nonlinear localized
matter waves appear when Ω ∼ ω⊥ at lowest Landau level [9]
which appears due to the fictionary magnetic field induced by trap
rotation [10].

The goal of the present work is to study bosonic ensemble in
rotating reference frame by a virtue of rotating optical dipole trap
whose rotation is due to the frequency detuning δω. The proposed
trap configuration is composed of the two counter-propagating
optical vortices. The shape of the interference pattern is defined
by the mutual orientation of their orbital angular momenta ±�h̄
(OAM). When OAMs are co-directed the λ/2 spaced toroidal traps
are formed by Laguerre–Gaussian (LG) [11] or Bessel vortices [12].
This geometry had been used for the single atom trapping and de-
tection [13] and for the analysis of persistent condensate flows in
LG beam waist [14]. When OAMs are counter-directed due to the
phase-conjugation of the backward reflected LG beam the 1D sinu-
soidal intensity grating is transformed into the truly 3D helicoidal
(Fig. 1, Section 2) grating I(z, r, θ, t) [11,12,15]. This grating exper-
imentally observed for δω = 0 [16]:

I(z, r, θ, t) ∼= r2|�| exp
[−r2] cos

[
δωt − (k f + kb)z + 2�θ

]
, (3)

where z, r, θ are cylindrical coordinates, must rotate with angular
frequency Ω = θ̇ = δω/2� when δω �= 0.

Noteworthy the similar interferometric configuration with
counter-directed spin optical angular momenta (circular polariza-
tions) which is used for the sub-Doppler polarization gradient
cooling [17]. The interference pattern forms the static potential
gratings due to Zeeman shift between ground-state sublevels. This
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causes the Sisyphus deceleration of the atomic beam in optical
molasses.

We consider two possible regimes of the cold ensemble trap-
ping when kinetic energy is small compared to the interaction
and trapping energies. One Thomas–Fermi solution is obtained as
a balance of the red-detuned optical attractive potential and self-
defocussing due to positive as . This solution has atomic density
ρh perfectly collocated with rotating optical helix I(z, r, θ, t). In
this case the rotating potential imposes rotation to superfluid. The
other TFA solution has nonrotating density “funnel” profile ρfun rel-
evant to thermodynamic limit when number of atoms N → ∞.

Next the analytical solution of GPE for nonzero kinetic energy
Ψhel is described. It is valid when optical trapping and interaction
energies are comparable and subtract each other in GPE. The lin-
ear momentum 〈P z〉 and angular momentum 〈Lz〉 of this helical
atomic cloud are evaluated. The Landau criterion | �V | > ε(�p)/|�p|
for the appearance of elementary excitations and superfluidity
breakup [18] is discussed for helical geometry.

2. Twisted wavetrains

It is well known that interference of a two counter propagat-
ing waves with a different frequencies ω f , ωb produces a running
sinusoidal roll intensity grating [6,19]. For the equal wave ampli-
tudes |E f |, |Eb| and the phase difference φ the distribution of the
light intensity I(z, r, θ, t) has the following form:

I(z, r, θ, t) ∼ 2|E( f ,b)|2
[
1 + cos

[
δωt − (k f + kb)z + φ

]]

× exp

[
− r2

D0
2(1 + z2/z2

R)

]
, zR = k( f ,b)D0

2, (4)

provided that a visibility of pattern is good enough |E( f )| ∼= |E(b)|
[20], where zR is Rayleigh range, D0 is a beam waist radius, the
self-similar variable χ = (ω f −ωb)t − (k f +kb)z +φ is responsible
for the translation of the interference pattern along z-axis with the
group velocity V z = (ω f − ωb)/(k f + kb). The transversal (in the
plane (r, θ)) confinement of the light amplitudes E f , Eb is typical
for the zeroth-order Gaussian beams. The roll interference pattern
evolves into the sequence of the equidistantly spaced rotationally
invariant in θ ellipsoids centered at the propagation axis z [11].
For the higher-order propagation modes namely Laguerre–Gaussian
beams (LG) with azimuthal quantum number � and orbital angular
momentum �h̄ per photon [21]:

E( f ,b)(z, r, θ, t) ∼ E( f ,b) exp[i(−ω( f ,b)t ± k( f ,b)z) ± i�θ]
(1 + iz/zR)

(r/D0)
|�|

× exp

[
− r2

D0
2(1 + iz/zR)

]
, (5)

the interference pattern is different for LG reflected from conven-
tional mirror and phase-conjugating mirror. Backward reflection
from conventional spherical mirror changes the topological charge
of the LG [11], exactly in the same way as circular polarization of
light changes from left to right and vice-versa in reflection [19].
The intensity Itor(z, r, θ, t) vanishes on the beam axis thus inter-
ference pattern transforms into the sequence of the equidistant
rotationally invariant toroids separated by λ/2 interval:

Itor(z, r, θ, t) = An
[
1 + cos

[
δω · t − (k f + kb)z

]]
(r/D0)

2|�|

× exp

[
− 2r2

D0
2(1 + z2/z2

R)

]
,

An = ε0c
2|E( f ,b)|22(|�|+1)

π�!D0
2

, (6)

Fig. 1. The isosurface of the optical intensity It w and the Thomas–Fermi density
ρh of the cold atomic cloud in a helical optical dipole trap (7), (19) (the scales
are in μm, but longitudinal modulation of λ/2 is enlarged). The spatial modulation
is induced by the interference of counter-propagating LG beams with the opposite
angular momenta. The pattern rotates with angular frequency δω/2� as a “solid
body”. Magnetic field �B adjusts the scattering length as to balance the attractive
optical potential by many-body defocussing.

where ε0 is the dielectric permittivity of vacuum. The reflection
from phase-conjugating mirror (PCM) does not change the topo-
logical charge of LG and the interference pattern is twisted [11,16]:

It w(z, r, θ, t) = [
1 + cos

[
δω · t − (k f + kb)z + 2�θ

]]
An

· (r/D0)
2|�| exp

[
− 2r2

D0
2(1 + z2/z2

R)

]
. (7)

The intensity also vanishes at LG axis z as r2|�| , while a self-similar
argument:

χ = [
(ω f − ωb)t − (k f + kb)z + 2�θ

]
, (8)

keeps the maxima of intensity at the 2� collocated helices sepa-
rated from each other by λ/2 interval (Fig. 1). The azimuthal term
2�θ appears due to phase-conjugation Eb ∼ E f

∗ . Thus we have
the following strict correspondence between the roll interference
pattern (2) and the helical interference pattern (7): the frequency
difference δω = ω f − ωb is the cause of the translation of rolls
with group velocity V z = (ω f −ωb)/(k f +kb) of the wavetrain, pro-
duced by a sum of the two counter-propagating beams (E f + Eb)

[5]. The δω is responsible also for the rotation of helices with an-
gular velocity θ̇ = δω/2�. The rotation is the cause of the pitch of
helical interference maxima along z-axis. Consequently there exists
a perfect mechanical analogy between the solid body rotation of the
helix described by formula (7) and an Archimedean screw. Namely
the positive δω corresponds to the counter-clockwise rotation and
this provides the pitch in positive z direction for right helices. On
the other hand the negative δω means clockwise rotation. In this
case (δω < 0) the positive translation speed in z direction takes
place for the left-handed helices. Evidently the change of the topo-
logical charge � changes the direction of helix translation �V z due
to alternation of the helix hand to the opposite one for a given δω.

This mechanical analogy is useful for the analysis of the cold
atoms motion in the helical trap. The velocity vector of the con-
densate fragment trapped and perfectly collocated with intensity
maxima has two components �V = �V z + �V θ (Fig. 1). The axial com-
ponent is a group velocity | �V z| = (ω f −ωb)/(k f + kb) of the wave-
train, while the azimuthal component | �V θ | = (ω f − ωb) · D0 is of
kinematic nature.
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The electromagnetic orbital angular momentum inside LG beam
waist volume V ∼= π D2

0zR located near z = 0 plane within Rayleigh
range |z| < zR is the expectation value of the angular momentum
operator L̂z = −ih̄[�r × ∇] = −ih̄ ∂

∂θ
[24]:

〈Lz〉( f ,b) = 〈
Ψ �

( f ,b)

∣∣L̂z
∣∣Ψ �

( f ,b)

〉

= 2ε0

∫
V

(
E+

( f ,b)

)∗(−ih̄[�r × ∇]E+
( f ,b)

)
d3�r

= 2ε0

∫ (
E+

( f ,b)

)∗
(

−ih̄
∂

∂θ
E+

( f ,b)

)
r dr · dθ dz

 ±�h̄
I( f ,b)V

h̄ω( f ,b)c
, (9)

where I( f ,b) = ε0c|E( f ,b)|2 is the light intensity, Ψ �
( f ,b)

= √
2ε0 ×

E+
( f ,b)

(z, r, θ, t) are the macroscopic wavefunctions of a single pho-
ton inside a forward or backward beam (5) with the winding
number �, E+ means the positive frequency components in E(�r, t)
spectrum. The square modulus |Ψ �

( f ,b)
|2 is a probability density of

the photon detection which is proportional to the energy density
of classical wave [24]. In this particular paraxial case the spin–orbit
coupling [25] is small enough and the angular momentum of the
photon is exactly decoupled to the spin and the orbital compo-
nent: Ĵ = Ŝ + L̂. The linear momentum expectation values for the
forward and backward LG are as follows:

〈P z〉( f ,b) = 〈
Ψ �

( f ,b)

∣∣ P̂
∣∣Ψ �

( f ,b)

〉

= 2ε0

∫ (
E+

( f ,b)

)∗
(

−ih̄
∂

∂z
E+

( f ,b)

)
d3�r

 ±h̄k( f ,b)

I( f ,b)V

h̄ω( f ,b)c
. (10)

The ratio of the angular and linear momenta is Lz/P z ∼ �c/ω( f ,b)

[25]. The angular and linear momenta of the composite wavetrains
(6) and (7) (Fig. 1) are:

〈Lz〉( f +b) = 〈
Ψ �

f + Ψ ±�
b

∣∣L̂z
∣∣Ψ �

f + Ψ ±�
b

〉  (�h̄ ± �h̄)
I( f ,b)V

h̄ω( f ,b)c
,

〈P z〉( f +b) = 〈
Ψ �

f + Ψ ±�
b

∣∣ P̂
∣∣Ψ �

f + Ψ ±�
b

〉  (h̄k f − h̄kb)
I( f ,b)V

h̄ω( f ,b)c
,

(11)

where the upper sign in ± corresponds to reflection from conven-
tional mirror while the bottom sign stands for the reflection from
PC-mirror with alternation of the photon angular momentum.

The simplest conceivable configuration of linear PCM composed
of plane mirrors, wavefront curvature compensating lenses and
beam splitters is described in [27,23]. The goal of proposed setup
is to counter-direct the split LG beams. The four reflections are
the necessary minimum. The case is that the incidence angles
much above 45 degrees will distort both polarization and spa-
tial structure of LG. In addition a small sliding of a beam along
the reflecting surface [26] may occur when mirror is tilted with
respect to the LG propagation axis. The evident physical restric-
tion on this loop setup is to keep the path difference �L of
the counter directed LG smaller than coherence length of trap-
ping laser field (�L � c·τcoh) [27]. The small frequency shift δω ≈
2π · 10−(1–3) rad/s required to cause the helix rotation [11] might
be induced by a frequency ramp [5] or via rotational Doppler shift
which appears due to rotation of the half-wavelength plate [28] or
Dove prism [29].

3. Cold ensemble density and velocity field in the helical trap

Consider a bosonic cloud prepared in an elongated trap [5]
and suddenly released afterwards. The well elaborated experimen-
tal procedure is to impose a periodic optical potential to study
the Bloch oscillations, macroscopic Landau–Zener tunneling and
Josephson effects [4,6]. In our case the imposed optical potential
is a helical one:

V opt(z, r, θ, t) = −Re[α(ω)]
2ε0c

It w(z, r, θ, t),

α(ω) = 6πε0c3 Γ/ω0
2

(ω2
0 − ω2 − i(ω3/ω0

2)Γ )
, (12)

where α(ω) is the polarizability of atom, which is real, i.e.
α(ω) ≈ Re[α] at large detunings from resonance ω − ω0, Γ =
e2ω0

2/6πε0mec3 is classical damping rate via radiative energy
loss, me is electron mass [3]. The GPE for wavefunction Ψ of en-
semble confined by V opt is:

ih̄
∂Ψ (�r, t)

∂t
= − h̄2

2m
�Ψ + V optΨ + 4π h̄2as(�B)

m
|Ψ |2Ψ, (13)

with as(�B) = abg(1 + �B/(|�B| − B F )) magnetic field dependent s-
wave scattering length, where abg is background value of as , B F

and �B are the Feshbach magnetic induction and resonance width
respectively.

Consider the sufficiently large number of trapped atoms (N ∼=
106–12). Then quantum pressure term following from the uncer-
tainty principle is small (h̄2�Ψ/2m ∼ 0) compared to the optical
trapping and interaction terms [4]:

Eint

Ekin

∼= N · abg

aho
, (14)

where aho
∼= √

h̄/mωz is the “harmonic oscillator width” [4]. The
ratio Eint/Ekin (14) is much more than unity for the most of the
near infrared lasers λ = 0.8–1.5 μm, under the standard focus-
ing requirement D0 ∼ 10–100 μm and when as(�B) is tuned in the
range ∼= 1–100 nm via Feshbach resonance. For the mid-infrared
trapping at CO2 lasing wavelength λ = 10.6 μm the kinetic energy
term Ekin = 2h̄2/mλ2 is about 100 times smaller. The optical dipole
trapping energy Edipole is:

Edipole
∼= N · V opt ∼= − �p · �E

2
∼= −α�E2N

2

∼= −α It w N

2ε0c
= −e2 It w N

me�ω22ε0c
, �ω = ω f ,b − ω0 (15)

where It w is the optical intensity of trapping beams [3]. Hence
one might expect that a Thomas–Fermi approximation (TFA) is ad-
equate in our case when interaction is repulsive as > 0 [4].

When inhomogeneous ensemble is considered in the thermody-
namic limit (N → ∞) the local density approximation for chemical
potential is used μ(r) = μlocal[ρ(�r)] + V opt(�r) [4]. Let us consider
the following TFA wavefunction in the vicinity of the LG beam
waist (i.e. within Rayleigh range |z| < zR ):

Ψfun = Φ(r)exp

[
− iμ(r)t

h̄
+ iΦ(r)2 sin(δωt − 2kz z + 2�θ)

]
,

(16)

where the local r-dependent chemical potential μ(r) is:

μ(r) = 4π h̄2asΦ(r)2/m; It w = 2ε0c|E( f ,b)|2;
Φ(r)2 = exp

(−2r2/D2
0

) · (r/D0)
2|�| · α(ω)It w

2ε0c · h̄ · δω . (17)
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The wavefunction (16) is normalizable and fits the GPE by sub-
stitution. This TFA density of atoms ρfun(z, r, θ, t) = |Ψfun|2 ∼
exp(−2(r/D0)

2)/(r/D0)
2|�| is (z, t)-independent “funnel” collo-

cated with the optical helix It w(z, r, θ, t). The phase modulation of
Ψfun has a maximum near the density maximum ρfun(z, r, θ, t), si-
nusoidal dependence on azimuthal angle θ and decreases down to
zero on LG axis and outside the LG waist. Noteworthy arg[Ψfun] is
a multiply valued function of θ . Hence this solution is of restricted
interest. It may be used for evaluations of the thermodynamical
parameters of the cold ensemble with |Ψfun|2 density [4].

The other solution for dilute Bose gas (e.g. N ∼ 106) is obtained
in the TFA for r-independent chemical potential μ(�r) = const. The
mean field wavefunction here Ψh is a sum of the two phase-
conjugated vortices with the opposite angular momenta ±h̄�:

Ψh(z, r, θ, t) = Ψ�(z, r, θ, t) + Ψ−�(z, r, θ, t)

∼= Ψ±�(z = 0) · (r/D0)
|�|

1 + z2/z2
R

exp

[
− r2

D0
2(1 + iz/zR)

]

×
{

exp[− iμ f t
h̄ + ik f z + i�θ]

(1 + iz/zR)

+ exp[− iμbt
h̄ − ikb z − i�θ]

(1 + iz/zR)

}
, (18)

where the difference of the partial chemical potentials (μ f −
μb), associated with the each of “counter-propagating” wavefunc-
tions Ψ� , Ψ−� is adjusted to the frequency difference of counter-
propagating optical fields (μ f − μb)/h̄ = δω = ω f − ωb . The sub-
stitution of this TFA wavefunction into GPE gives the following link
for parameters:

μ − α(ω)It w (0) · [1 + cos(δωt + 2kz ± 2�θ)]
2ε0c · g(1 + z2/z2

R)
(r/D0)

2|�|

× exp

[
− 2r2

D0
2(1 + z2/z2

R)

]
= ρh(z, r, θ, t), (19)

where k = k f
∼= kb , μ = μ f ≈ μb is a constant (z, r, θ , t-

independent) value of chemical potential, g = 4π h̄2as(�B)/m is the
interaction parameter. This is the quasiclassical restriction imposed
on a homogeneity of chemical potential of the system in an exter-
nal field V opt [4]. In accordance to this solution the density of the
cold atomic ensemble ρh(z, r, θ, t) is perfectly correlated with the
rotating optical helix potential It w(z, r, θ, t) as depicted at Fig. 1.
The density ρh rotates as a “solid body”. The speed of the axial
translation is V z = λ · δω/4π .

Apart from TF approximation the truly exact solution with
nonzero kinetic energy exists Ψex = Ψ f + Ψb . It is also a super-
position of the two counter propagating paraxial matter waves Ψ f
and Ψb . Let us reduce GPE (13) to the paraxial form relevant to
highly elongated geometry, as a helical one in our case:

ih̄
∂Ψ( f ,b)

∂t
= − h̄2

2m
�⊥Ψ( f ,b) − i

2k( f ,b)h̄
2

2m

∂Ψ( f ,b)

∂z
+ V optΨ( f ,b)

+ h̄2

2m
k2

( f ,b)Ψ( f ,b) + g|Ψ f + Ψb|2Ψ( f ,b). (20)

The perfect mutual cancellation of trapping and interaction terms:

−V opt(z, r, θ, t)Ψ( f ,b) = g|Ψ f + Ψb|2Ψ( f ,b), (21)

occurs when nonlinear defocussing due to positive scattering
length as is compensated by attraction to intensity maxima caused
by red detuning. Taking again the exact helical solution of (20) as
a superposition of the two counter-propagating vortices:

Ψex(z, r, θ, t) = Ψ f (z, r, θ, t) + Ψb(z, r, θ, t)

∼= Ψ̃ f · exp

[
− iμ f t

h̄
+ ik f z

]

+ Ψ̃b · exp

[
− iμbt

h̄
− ikb z

]
, (22)

and under the natural assumptions:

k( f ,b)∂Ψ̃( f ,b)/∂z � ∂2Ψ̃( f ,b)/∂z2, (23)

two following equations for counter propagating and counter ro-
tating matter waves Ψ̃ f and Ψ̃b are valid:

i2k( f ,b)

∂Ψ̃( f ,b)

∂z
+ �⊥Ψ̃( f ,b) −

(
k2
( f ,b) + 2mμ( f ,b)

h̄2

)
Ψ( f ,b) = 0,

(24)

which have the vortex solutions with charge � for the Ψ̃ f ,b(z, r, θ)

with initial condition at z = 0 equals Ψ̃0:

Ψ̃( f ,b) ∼
Ψ̃0 · (r/D0)

|�| · exp[− r2

D0
2(1+iz/zR )

± i�θ]
(1 + iz/zR)

. (25)

The issues of dynamical stability of (22) with respect to small per-
turbations and thermodynamical stability from the point of view
of least energy arguments deserve a further careful analysis and
will be published elsewhere. For example transformation to the
reference frame rotating with angular velocity Ω = δω/2� syn-
chronously with trapping helix leads to equation [4,9,10]:

ih̄
∂Ψ

∂t
= − h̄2

2m
�Ψ + Ṽ opt(z, r, θ)Ψ + g|Ψ |2Ψ − Ω L̂zΨ,

Ṽ opt ∼ r2|�| exp

( −2r2

D2
0(1 + z2/k2 D4

0)

)[
1 + cos(2kz + 2�θ)

]
, (26)

where stationary solutions for the diluted (μ = const) ensemble
Ψ = Φ(z, r, θ)exp(−iμt/h̄) are given by:

μΦ = − h̄2

2m
�Φ + Ṽ opt(z, r, θ)Φ + g|Φ|2Φ + Ω ih̄

∂Φ

∂θ
. (27)

4. Macroscopic observables

The helical solutions composed of the counter propagating free
space LG wavefunctions apparently fit the continuity equation and
have realistic field of velocities. In addition to the ensemble density
ρ(�r, t) obtained above in TFA the structure of velocity field �V (�r, t)
is a consequence of the complex geometry of the helical wavetrain
which requires the perfect adjustment of the phase fronts achieved
by phase-conjugation of colliding vortices. The one possible appli-
cation of (18), (22) might be in using them as variational ansatz for
emulation of GPE [30]. Nevertheless the explicit form of solutions
Ψh (18), (22) offers a possibility to evaluate the macroscopic ob-
servables of the trapped ensemble. Helical wavetrain has nonzero
momentum P z (10):

〈P z〉h = 〈Ψh| − ih̄
∂

∂z
|Ψh〉 = Nh̄(k f − kb)

⇐ h̄

∫
V

dV exp
(−r2)r2|�|[k f − kb + k f exp(iχ)

− kb exp(−iχ)
]
, (28)

and easily calculated angular momentum Lz (9):
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〈Lz〉h = 〈Ψh| − ih̄
∂

∂θ
|Ψh〉 = N�h̄(1 ∓ 1)

⇐ h̄

∫
V

dV exp
(−r2)r2|�|[1 ∓ 1 + exp(iχ) ∓ exp(−iχ)

]
,

(29)

due to the apparent identity
∫ 2π

0 sin(χ)dθ = 0. The upper ∓ sign
in (29) corresponds to counter directed angular momenta and he-
lical interference pattern (7), while bottom ∓ sign corresponds to
the toroidal optical interference pattern (6).

The same expectation values 〈P z〉ex = Nh̄(k f − kb) and 〈Lz〉ex =
N�h̄(1 ∓ 1) has exact wavefunction Ψex (22). Quantum mechan-
ically this happens because the wavefunction in both cases is a
superposition of the two partial matter waves Ψ f and Ψb in (22)
(or Ψ� and Ψ−� in (18)) having opposite and quantized (i.e. equal
to ±�h̄) mutually subtracted angular momenta. This means also
that helical optical wavetrain (7) contains OAM of exactly 0 × �h̄
per photon, while toroidal wavetrain (6) contains 2�h̄ per photon
(11) as shown in Section 2.

This feature looks seemingly counter intuitively from the point
of view of classical hydrodynamics, but the similar results on van-
ishing of the moment of inertia for purely superfluid ensemble
were summarized in [4]. Namely the density of atomic ensem-
ble ρh = |Ψh,ex|2 rotates as a solid body and one might expect that
ρh to have classically the angular momentum Lclass = Izz · δω/2�,
where Izz is the moment of inertia of the helical wire located in
LG beam waist with the density profile ρh [31]:

Izz =
∫

Nm|Ψh,ex|2r2 dV

= Nm

∫
|Ψh,ex|2r3 dr dθ dz

 ∼ Nm

∫ (
1 + cos

(
δωt + (k f + kb)z + 2�θ

)) · dθ dz

· exp
(−r2/D0

2)r2+2|�| · r dr ∼ NmD0
2 Zr . (30)

Nevertheless due to the quantization of the angular momen-
tum in free space, the oppositely directed angular momenta cancel
each other completely, because they have integer opposite val-
ues of ±�h̄ [32]. In T → 0 limit [4] the net angular momentum
of the helical wavetrains (18), (22) is zero because the super-
fluid component remains only. On the contrary, the linear mo-
mentum is not quantized in free space and this leads to nonzero
net linear momentum P z of the ensembles (18), (22), regardless
to the mutual orientation of their OAMs. The net momentum P z

is small because of the smallness of the group velocity of the he-
lical wavetrain V z = δω/(k f + kb). For example when frequency
splitting δω is induced by rotational Doppler effect [27,28], the
speed of the axial translation of the helical density profiles (18),
(22) V z ∼ is several μm per second (several rotations of helix per
second).

The else interesting physical consequences relevant to exper-
iments with trapped quantum gas may be formulated from the
point of view of the Landau criterion | �V | > ε(�p)/|�p| for the ap-
pearance of elementary excitations (rotons) and superfluidity de-
struction, where ε(�p) is the energy–momentum dispersion relation
in the frame moving with superfluid. Following [18,22] consider
the flow of quantum gas in a narrow helical channel with veloc-
ity �V = �V z + �V θ . In the rest frame the momentum of excitation �p
must be opposite to the velocity of superfluid �V , because of the
least energy constraint imposed upon excitation ε(�p) + �p · �V < 0.
Thus ε(�p) − |�p| · | �V | < 0 and | �V | > ε(�p)/|�p|. Because in our case
the only significant component of �V is V θ = δωD0/2� the excita-
tions with momentum �p appear when:

δωcrit D0 > 2� · ε(�p)/|�p|. (31)

The experimentally controllable detuning δω of counter propagat-
ing waves ω f and ωb by rotational Doppler effect [27] which leads
to the change the angular velocity of helix rotation makes possible
to determine the critical velocity of superfluid, defined by contact
point of roton minimum of ε(�p) with the line |�p|V θ . The turbu-
lent excitations (rotons) are assumed to appear due to ejection of
superfluid across the trapping potential barrier owing to centrifu-
gal force, rather than because of the roughness or the channel end
[18,22].

5. Conclusion

The flow of the degenerate quantum gas in helical trap had
been studied analytically in the framework of the Gross–Pitaevskii
equation. The necessary conditions were formulated for the ap-
pearance of the helical Bose–Einstein condensate flows due to the
Thomas–Fermi balance of the self-defocussing of condensate with
positive scattering length as and “red”-detuned optical dipole po-
tential. The minimal achievable ensemble temperature might be
approximately evaluated as a recoil one Trecoil = 4 · h̄2/(2mλ2 · kB)

[17]. The possible experimental implementation of helical trapping
is a sudden switching on of the helical potential after the con-
densate release from elongated optical trap in a way similar to
switching of accelerated grating in Ref. [5].

The peculiarities of the cooling mechanisms in this helical con-
figuration were not considered in the current work. But the helical
interference pattern (see Fig. 1) geometry might reveal the new
features of the well elaborated mechanisms as the Doppler cool-
ing [33], polarization gradient cooling [17] or velocity selective
population trapping [34]. The newly found loop and helical fea-
tures of the optical speckle patterns [35,36] are also a promising
trapping opportunities which may enlighten the features of the
Anderson localization of cold atoms in 1D and 3D speckle pat-
terns [37].

Noteworthy the similar helical geometry of the colliding LG
optical vortices of picosecond duration with opposite angular mo-
menta proposed recently for the plasma currents excitation via
ponderomotive force [23]. As the plasma vortices are the sources
of the axial magnetic fields, the superfluid motion in helical trap-
ping environment (13) is to be associated with a so-called artificial
magnetic fields [9,10].
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